Banach Algebras of Operator Sequences
نویسندگان
چکیده
During the last decades it turned out to be fruitful to apply certain Banach algebra techniques in the theory of approximation of operators by matrix sequences. Here we discuss the case of operator sequences (acting on infinite dimensional Banach spaces and which do not necessarily converge strongly) and we derive analogous results concerning the stability and Fredholm properties of such sequences. For this, the notions of P -Fredholmness and P -strong convergence play an important role and are extensively studied. As an application we consider the finite sections of band-dominated operators on l p -spaces, including the cases p ∈ {1,∞} . Mathematics subject classification (2010): 65J10, 47A58, 47B36, 47N40.
منابع مشابه
Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملSecond dual space of little $alpha$-Lipschitz vector-valued operator algebras
Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.
متن کاملThe structure of module contractible Banach algebras
In this paper we study the module contractibility ofBanach algebras and characterize them in terms the conceptssplitting and admissibility of short exact sequences. Also weinvestigate module contractibility of Banach algebras with theconcept of the module diagonal.
متن کاملCompletely continuous Banach algebras
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...
متن کامل